Fat minors cannot be thinned (by quasi-isometries) (2024)

\tkzSetUpPoint

[fill=black, size = 3pt]\tkzSetUpLine[color=black, line width=0.6pt]\tkzSetUpCircle[color=black, line width=0.6pt]

James Davies 111Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK (jgd37@cam.ac.uk).  Robert Hickingbotham 222School of Mathematics, Monash University, Melbourne, Australia (robert.hickingbotham@monash.edu). Research supported by an Australia Mathematical Society Lift-Off Fellowship and the Monash Postgraduate Publication Award.
Freddie Illingworth 333Department of Mathematics, University College London, London, UK (f.illingworth@ucl.ac.uk). Research supported by EPSRC grant EP/V521917/1 and the Heilbronn Institute for Mathematical Research.  Rose McCarty 444School of Mathematics and School of Computer Science, Georgia Institute of Technology, Atlanta, USA (rmccarty3@gatech.edu). Supported by the National Science Foundation under Grant No.DMS-2202961.

Abstract

We disprove the conjecture of Georgakopoulos and Papasoglu that a length space (or graph) with no K𝐾Kitalic_K-fat H𝐻Hitalic_H minor is quasi-isometric to a graph with no H𝐻Hitalic_H minor. Our counterexample is furthermore not quasi-isometric to a graph with no 2-fat H𝐻Hitalic_H minor or a length space with no H𝐻Hitalic_H minor.On the other hand, we show that the following weakening holds: any graph with no K𝐾Kitalic_K-fat H𝐻Hitalic_H minor is quasi-isometric to a graph with no 3333-fat H𝐻Hitalic_H minor.

1 Introduction

Inspired by connections to metric geometry, fat minors were independently introduced by Chepoi, Dragan, Newman, Rabinovich, and Vaxes[CDN+12] and Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, and Scott[BBE+23] as a coarse variant of graph minors.They have been a key tool in resolving open problems at the intersection of structural graph theory and coarse geometry [BBE+23].Georgakopoulos and Papasoglu[GP23] recently gave a systematic overview of this blossoming area which can be described as “coarse graph theory”.At the heart of their paper, they proposed a natural conjecture that would effectively lift graph minor theory to the coarse setting: for every finite graph H𝐻Hitalic_H, graphs with no fat H𝐻Hitalic_H minor are quasi-isometric to graphs with no H𝐻Hitalic_H minor. Quasi-isometry is a fundamental notion from geometric group theory which preserves the large-scale geometry of a metric space. So, if true, this conjecture would imply coarse analogues to various results from graph minor theory, such as the Graph Minor Structure Theorem of Robertson and Seymour[RS03].

Georgakopoulos and Papasoglu’s conjecture has been settled for particular graphs H𝐻Hitalic_H. Manning[Man05] characterised quasi-trees which implies the case H=K_3𝐻subscript𝐾_3H=K_{\_}3italic_H = italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 (see[GP23]). The case H=K_2,3𝐻subscript𝐾_23H=K_{\_}{2,3}italic_H = italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 , 3 was proved by Chepoi, Dragan, Newman, Rabinovich, and Vaxes[CDN+12], and more generally, Fujiwara and Papasoglu[FP23] recently characterised quasi-cacti. The case H=K_1,m𝐻subscript𝐾_1𝑚H=K_{\_}{1,m}italic_H = italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 , italic_m was recently settled by Georgakopoulos and Papasoglu[GP23].

Our main contribution is a counterexample to the conjecture of Georgakopoulos and Papasoglu.

Theorem 1.

There exists a finite graph H𝐻Hitalic_H such that, for every q𝑞q\in\mathbb{N}italic_q ∈ blackboard_N, there is a graph G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q that does not contain H𝐻Hitalic_H as a 3333-fat minor and is not q𝑞qitalic_q-quasi-isometric to any graph with no (2222-fat) H𝐻Hitalic_H minor.

In fact, Theorem1 gives a strong counterexample to Georgakopoulos and Papasoglu’s conjecture, since we can find H𝐻Hitalic_H as a 2-fat minor, rather than just as a minor.One might hope that an analogue of the conjecture might still hold for edge weighted graphs or, more generally, length spaces, but this is not the case.

Theorem 2.

There exists a finite graph H𝐻Hitalic_H such that, for every q𝑞q\in\mathbb{N}italic_q ∈ blackboard_N, there is a graph G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q that does not contain H𝐻Hitalic_H as a 3333-fat minor and is not q𝑞qitalic_q-quasi-isometric to any length space with no (213q2)superscript213superscript𝑞2(2^{-13q^{2}})( 2 start_POSTSUPERSCRIPT - 13 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT )-fat H𝐻Hitalic_H minor.

It turns out that Theorem1 is essentially tight;we prove that graphs with no K𝐾Kitalic_K-fat H𝐻Hitalic_H minor are K𝐾Kitalic_K-quasi-isometric to graphs with no 3333-fat H𝐻Hitalic_H minor.By scaling,Theorem2 is also similarly tight up to some positive factor depending on q𝑞qitalic_q (see 10).

Theorem 3.

Let K𝐾Kitalic_K be a positive integer, \mathcal{H}caligraphic_H a non-empty collection of graphs, and G𝐺Gitalic_G a graph that has no K𝐾Kitalic_K-fat H𝐻Hitalic_H minor for every H𝐻H\in\mathcal{H}italic_H ∈ caligraphic_H. Then G𝐺Gitalic_G is K𝐾Kitalic_K-quasi-isometric to a graph G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG that does not contain a 3333-fat H𝐻Hitalic_H minor for each H𝐻H\in\mathcal{H}italic_H ∈ caligraphic_H.

Our proof of Theorem1 is based on a recent construction of Nguyen, Scott, and Seymour[NSS24] which was used to disprove a conjectured coarse version of Menger’s theorem. The connection between Menger’s theorem and Theorem1 intuitively comes from the fact that Menger’s theorem can be interpreted as a statement about rooted minors.

2 Preliminaries

A length space is a metric space (M,d)𝑀𝑑(M,d)( italic_M , italic_d ) such that, for every x,yM𝑥𝑦𝑀x,y\in Mitalic_x , italic_y ∈ italic_M and ε>0𝜀0\varepsilon>0italic_ε > 0, there is an (x,y)𝑥𝑦(x,y)( italic_x , italic_y )-arc of length at most d(x,y)+ε𝑑𝑥𝑦𝜀d(x,y)+\varepsilonitalic_d ( italic_x , italic_y ) + italic_ε whenever d(x,y)𝑑𝑥𝑦d(x,y)italic_d ( italic_x , italic_y ) is finite.In particular, every graph (where the edges are arcs of length one) is a length space (in which one can even take ε=0𝜀0\varepsilon=0italic_ε = 0). Graphs with arbitrary non-negative real-valued edge-lengths also induce a length space. See [BH99] for further background on length spaces.

For point sets X,Y𝑋𝑌X,Yitalic_X , italic_Y in a length space G𝐺Gitalic_G, an (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y )-path is a path in G𝐺Gitalic_G with one end-point in X𝑋Xitalic_X and the other in Y𝑌Yitalic_Y. The distance between X𝑋Xitalic_X and Y𝑌Yitalic_Y, denoted dist_G(X,Y)subscriptdist_𝐺𝑋𝑌\operatorname{dist}_{\_}G(X,Y)roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G ( italic_X , italic_Y ) is the infimum of the lengths of the (X,Y)𝑋𝑌(X,Y)( italic_X , italic_Y )-paths in G𝐺Gitalic_G. Note that this corresponds to the usual notion of distance for graphs.

We say that a set of points Y𝑌Yitalic_Y in a length space G𝐺Gitalic_G is path-connected if, for every x,yY𝑥𝑦𝑌x,y\in Yitalic_x , italic_y ∈ italic_Y, there is an (x,y)𝑥𝑦(x,y)( italic_x , italic_y )-path contained in Y𝑌Yitalic_Y.Note that this corresponds to the usual notion of connectivity for graphs.For a length space G𝐺Gitalic_G, a non-negative real r𝑟ritalic_r, and a set of points Y𝑌Yitalic_Y, we let N_Gr[Y]subscript𝑁_superscript𝐺𝑟delimited-[]𝑌N_{\_}G^{r}[Y]italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT [ italic_Y ] denote the set of points a𝑎aitalic_a such that there is an (a,Y)𝑎𝑌(a,Y)( italic_a , italic_Y )-path in G𝐺Gitalic_G of length at most r𝑟ritalic_r. In graphs this is just the set of points at distance at most r𝑟ritalic_r from Y𝑌Yitalic_Y.Note that for any point yG𝑦𝐺y\in Gitalic_y ∈ italic_G, N_Gr[{y}]subscript𝑁_superscript𝐺𝑟delimited-[]𝑦N_{\_}G^{r}[\{y\}]italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT [ { italic_y } ] is always path-connected.

For a positive integer K𝐾Kitalic_K, a K𝐾Kitalic_K-fat minor model of a graph H𝐻Hitalic_H in a length space G𝐺Gitalic_G is a collection (B_v:vV(H))(P_e:eE(H))(B_{\_}v\colon v\in V(H))\cup(P_{\_}e\colon e\in E(H))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v : italic_v ∈ italic_V ( italic_H ) ) ∪ ( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e : italic_e ∈ italic_E ( italic_H ) ) of path-connected sets in G𝐺Gitalic_G such that

  • V(B_v)V(P_e)𝑉subscript𝐵_𝑣𝑉subscript𝑃_𝑒V(B_{\_}v)\cap V(P_{\_}e)\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ∩ italic_V ( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e ) ≠ ∅ whenever v𝑣vitalic_v is an end of e𝑒eitalic_e in H𝐻Hitalic_H; and

  • for any pair of distinct X,Y{B_v:vV(H)}{P_e:eE(H)}𝑋𝑌conditional-setsubscript𝐵_𝑣𝑣𝑉𝐻conditional-setsubscript𝑃_𝑒𝑒𝐸𝐻X,Y\in\{B_{\_}v\colon v\in V(H)\}\cup\{P_{\_}e\colon e\in E(H)\}italic_X , italic_Y ∈ { italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v : italic_v ∈ italic_V ( italic_H ) } ∪ { italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e : italic_e ∈ italic_E ( italic_H ) } not covered by the above condition, we have dist_G(X,Y)Ksubscriptdist_𝐺𝑋𝑌𝐾\operatorname{dist}_{\_}G(X,Y)\geqslant Kroman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G ( italic_X , italic_Y ) ⩾ italic_K.

If G𝐺Gitalic_G contains an K𝐾Kitalic_K-fat minor model of H𝐻Hitalic_H, then we say that H𝐻Hitalic_H is a K𝐾Kitalic_K-fat minor of G𝐺Gitalic_G.

For q𝑞q\in\mathbb{N}italic_q ∈ blackboard_N, a q𝑞qitalic_q-quasi-isometry of a length space G𝐺Gitalic_G into a length space G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG is a map ϕ:XX^:italic-ϕ𝑋^𝑋\phi\colon X\to\widehat{X}italic_ϕ : italic_X → over^ start_ARG italic_X end_ARG such that, for every x,yX𝑥𝑦𝑋x,y\in Xitalic_x , italic_y ∈ italic_X,

q1dist_X(x,y)qdist_X^(ϕ(x),ϕ(y))qdist_X(x,y)+q,superscript𝑞1subscriptdist_𝑋𝑥𝑦𝑞subscriptdist_^𝑋italic-ϕ𝑥italic-ϕ𝑦𝑞subscriptdist_𝑋𝑥𝑦𝑞q^{-1}\cdot\operatorname{dist}_{\_}X(x,y)-q\leqslant\operatorname{dist}_{\_}{%\widehat{X}}(\phi(x),\phi(y))\leqslant q\cdot\operatorname{dist}_{\_}X(x,y)+q,italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⋅ roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_X ( italic_x , italic_y ) - italic_q ⩽ roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT over^ start_ARG italic_X end_ARG ( italic_ϕ ( italic_x ) , italic_ϕ ( italic_y ) ) ⩽ italic_q ⋅ roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_X ( italic_x , italic_y ) + italic_q ,

and, for every v^X^^𝑣^𝑋\widehat{v}\in\widehat{X}over^ start_ARG italic_v end_ARG ∈ over^ start_ARG italic_X end_ARG, there is a vX𝑣𝑋v\in Xitalic_v ∈ italic_X with dist_X^(v^,ϕ(v))qsubscriptdist_^𝑋^𝑣italic-ϕ𝑣𝑞\operatorname{dist}_{\_}{\widehat{X}}(\widehat{v},\phi(v))\leqslant qroman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT over^ start_ARG italic_X end_ARG ( over^ start_ARG italic_v end_ARG , italic_ϕ ( italic_v ) ) ⩽ italic_q. If X^^𝑋\widehat{X}over^ start_ARG italic_X end_ARG is a graph, then we restrict to quasi-isometries ϕitalic-ϕ\phiitalic_ϕ with ϕ:XV(X^):italic-ϕ𝑋𝑉^𝑋\phi\colon X\to V(\widehat{X})italic_ϕ : italic_X → italic_V ( over^ start_ARG italic_X end_ARG ).

Let G𝐺Gitalic_G be a graph and ZV(G)𝑍𝑉𝐺Z\subseteq V(G)italic_Z ⊆ italic_V ( italic_G ). We write G[Z]𝐺delimited-[]𝑍G[Z]italic_G [ italic_Z ] for the subgraph of G𝐺Gitalic_G induced on Z𝑍Zitalic_Z. We refer to Z𝑍Zitalic_Z and G[Z]𝐺delimited-[]𝑍G[Z]italic_G [ italic_Z ] interchangeably, whenever there is no chance of confusion. A graph J𝐽Jitalic_J is a subdivision of a G𝐺Gitalic_G if J𝐽Jitalic_J can be obtained from G𝐺Gitalic_G by replacing each edge uv𝑢𝑣uvitalic_u italic_v of G𝐺Gitalic_G by a path with end-vertices u𝑢uitalic_u and v𝑣vitalic_v. If each path has exactly k𝑘kitalic_k internal vertices, then we say that J𝐽Jitalic_J is the k𝑘kitalic_k-subdivision of G𝐺Gitalic_G.

For a graph G𝐺Gitalic_G, a tree-decomposition of G𝐺Gitalic_G is a collection of bags (B_xV(G):xV(T)):subscript𝐵_𝑥𝑉𝐺𝑥𝑉𝑇(B_{\_}x\subseteq V(G)\colon x\in V(T))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x ⊆ italic_V ( italic_G ) : italic_x ∈ italic_V ( italic_T ) ) indexed by a tree T𝑇Titalic_T such that for each vV(G)𝑣𝑉𝐺v\in V(G)italic_v ∈ italic_V ( italic_G ), T[{xV(T):vB_x}]𝑇delimited-[]conditional-set𝑥𝑉𝑇𝑣subscript𝐵_𝑥T[\{x\in V(T)\colon v\in B_{\_}x\}]italic_T [ { italic_x ∈ italic_V ( italic_T ) : italic_v ∈ italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x } ] is a non-empty subtree of T𝑇Titalic_T; and for each uvE(G)𝑢𝑣𝐸𝐺uv\in E(G)italic_u italic_v ∈ italic_E ( italic_G ), there is a node xV(T)𝑥𝑉𝑇x\in V(T)italic_x ∈ italic_V ( italic_T ) such that u,vB_x𝑢𝑣subscript𝐵_𝑥u,v\in B_{\_}xitalic_u , italic_v ∈ italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x. The width of (B_xV(G):xV(T)):subscript𝐵_𝑥𝑉𝐺𝑥𝑉𝑇(B_{\_}x\subseteq V(G)\colon x\in V(T))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x ⊆ italic_V ( italic_G ) : italic_x ∈ italic_V ( italic_T ) ) is max{|B_x|1:xV(T)}:subscript𝐵_𝑥1𝑥𝑉𝑇\max\{\lvert B_{\_}x\rvert-1\colon x\in V(T)\}roman_max { | italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x | - 1 : italic_x ∈ italic_V ( italic_T ) }. The treewidth tw(G)tw𝐺\operatorname{tw}(G)roman_tw ( italic_G ) of a graph G𝐺Gitalic_G is the minimum width of a tree-decomposition of G𝐺Gitalic_G. Treewidth is a fundamental parameter in algorithmic and structural graph theory and is the standard measure of how similar a graph is to a tree.

3 Removing coarseness counterexample

3.1 The construction

We start with Nguyen, Scott, and Seymour’s counterexample to a conjectured coarse version of Menger’s theorem[NSS24]. For a positive integer q𝑞qitalic_q, they defined the graph N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q shown in Figure1 where the complete binary treehas depth 13q213superscript𝑞213q^{2}13 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with each solid line being an edge and each dotted line represents a path of length 14q214superscript𝑞214q^{2}14 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

Fat minors cannot be thinned (by quasi-isometries) (1)

They proved that N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q has the following property.

Lemma 4 ([NSS24]).

Let S𝑆Sitalic_S and T𝑇Titalic_T be the sets of the three vertices in N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q as shown in the figure,and let P_1subscript𝑃_1P_{\_}1italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1, P_2subscript𝑃_2P_{\_}2italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2, P_3subscript𝑃_3P_{\_}3italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 be three (S,T)𝑆𝑇(S,T)( italic_S , italic_T )-paths in N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q. Then there exist distinct i,j{1,2,3}𝑖𝑗123i,j\in\{1,2,3\}italic_i , italic_j ∈ { 1 , 2 , 3 } such that dist(P_i,P_j)2distsubscript𝑃_𝑖subscript𝑃_𝑗2\operatorname{dist}(P_{\_}i,P_{\_}j)\leqslant 2roman_dist ( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i , italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j ) ⩽ 2.

We prove an additional property of N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.

Lemma 5.

N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q has treewidth at most seven.

Proof.

Subdividing an edge does not change the treewidth of a graph and so N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q has the same treewidth as the graph N_qsubscriptsuperscript𝑁_𝑞N^{\prime}_{\_}qitalic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q where each dotted segment has been replaced by an edge. Contract the following edges of the path at the bottom of N_qsubscriptsuperscript𝑁_𝑞N^{\prime}_{\_}qitalic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q: the edges joining the 1st and 2nd vertices, 3rd and 4th vertices, the 5th and 6th vertices, …. The resulting graph N_′′qsubscriptsuperscript𝑁′′_𝑞N^{\prime\prime}_{\_}qitalic_N start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q is a minor of the graph depicted in Figure2.

Fat minors cannot be thinned (by quasi-isometries) (2)

The graph in Figure2 is a subgraph of a Halin graph111A Halin graph is a planar graph that can be constructed from a planar embedding of a tree by connecting its leaves with a cycle which passes around the tree’s boundary. and so has treewidth at most three[Bod88]. Thus tw(N_′′q)3twsubscriptsuperscript𝑁′′_𝑞3\operatorname{tw}(N^{\prime\prime}_{\_}q)\leqslant 3roman_tw ( italic_N start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) ⩽ 3. When contracting the edges to get from N_qsubscriptsuperscript𝑁_𝑞N^{\prime}_{\_}qitalic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q to N_′′qsubscriptsuperscript𝑁′′_𝑞N^{\prime\prime}_{\_}qitalic_N start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q, the bags drop in size by a factor of at most two and so tw(N_q)=tw(N_q)7twsubscript𝑁_𝑞twsubscriptsuperscript𝑁_𝑞7\operatorname{tw}(N_{\_}q)=\operatorname{tw}(N^{\prime}_{\_}q)\leqslant 7roman_tw ( italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) = roman_tw ( italic_N start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) ⩽ 7, as required.∎

Now we turn to the construction of H𝐻Hitalic_H and G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q in Theorem1.

Let L𝐿Litalic_L and R𝑅Ritalic_R be vertex-disjoint copies of K_15subscript𝐾_15K_{\_}{15}italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 with vertex-sets {x_1,,x_15}subscript𝑥_1subscript𝑥_15\{x_{\_}1,\dotsc,x_{\_}{15}\}{ italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 , … , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 } and {y_1,y_15}subscript𝑦_1subscript𝑦_15\{y_{\_}1\dotsc,y_{\_}{15}\}{ italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 … , italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 }, respectively. Let H𝐻Hitalic_H be the graph obtained from the union of L𝐿Litalic_L and R𝑅Ritalic_R by adding the edges x_1y_1subscript𝑥_1subscript𝑦_1x_{\_}1y_{\_}1italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1, x_2y_2subscript𝑥_2subscript𝑦_2x_{\_}2y_{\_}2italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2, x_3y_3subscript𝑥_3subscript𝑦_3x_{\_}3y_{\_}3italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 as shown in Figure3.We will use the following properties of H𝐻Hitalic_H:

  1. (i)

    L𝐿Litalic_L and R𝑅Ritalic_R are both 4444-connected graphs with treewidth 14141414; and

  2. (ii)

    H𝐻Hitalic_H and (H\{x_2y_2,x_3y_3}){x_2y_3,x_3y_2}\𝐻subscript𝑥_2subscript𝑦_2subscript𝑥_3subscript𝑦_3subscript𝑥_2subscript𝑦_3subscript𝑥_3subscript𝑦_2(H\backslash\{x_{\_}2y_{\_}2,x_{\_}3y_{\_}3\})\cup\{x_{\_}2y_{\_}3,x_{\_}3y_{%\_}2\}( italic_H \ { italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 } ) ∪ { italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 } are isomorphic.

The graph G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q is obtained as follows and shown in Figure4.Let Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT be a 16q216superscript𝑞216q^{2}16 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-subdivision of K_15subscript𝐾_15K_{\_}{15}italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 and let Rsuperscript𝑅R^{\star}italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT be a 16q216superscript𝑞216q^{2}16 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-subdivision of K_15subscript𝐾_15K_{\_}{15}italic_K start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15. We let x_1,,x_15subscript𝑥_superscript1subscript𝑥_superscript15x_{\_}1^{\star},\dotsc,x_{\_}{15}^{\star}italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , … , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT and y_1,,y_15subscript𝑦_superscript1subscript𝑦_superscript15y_{\_}1^{\star},\dotsc,y_{\_}{15}^{\star}italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , … , italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 15 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT denote the high degree vertices of Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT and Rsuperscript𝑅R^{\star}italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT, respectively.Take disjoint copies of each of Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT, Rsuperscript𝑅R^{\star}italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT, and N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.Label the S𝑆Sitalic_S vertices of N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q as S_1subscript𝑆_1S_{\_}1italic_S start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1, S_2subscript𝑆_2S_{\_}2italic_S start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2, S_3subscript𝑆_3S_{\_}3italic_S start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 and the T𝑇Titalic_T vertices of N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q as T_1subscript𝑇_1T_{\_}1italic_T start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1, T_2subscript𝑇_2T_{\_}2italic_T start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2, T_3subscript𝑇_3T_{\_}3italic_T start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3.For each i{1,2,3}𝑖123i\in\{1,2,3\}italic_i ∈ { 1 , 2 , 3 } add a path of length 16q216superscript𝑞216q^{2}16 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT from x_isubscript𝑥_superscript𝑖x_{\_}i^{\star}italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT to S_isubscript𝑆_𝑖S_{\_}iitalic_S start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i and add a path of length 16q216superscript𝑞216q^{2}16 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT from y_isubscript𝑦_superscript𝑖y_{\_}i^{\star}italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT to T_isubscript𝑇_𝑖T_{\_}iitalic_T start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i.

3.2 Avoiding fat minors

We now show that G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q does not contain H𝐻Hitalic_H as a 3-fat minor.

Lemma 6.

For every q𝑞q\in\mathbb{N}italic_q ∈ blackboard_N, G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q does not contain H𝐻Hitalic_H as a 3333-fat minor.

Proof.

Suppose that G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q contains H𝐻Hitalic_H as a 3333-fat minor. Let (B_v:vV(H)):subscript𝐵_𝑣𝑣𝑉𝐻(B_{\_}v\colon v\in V(H))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v : italic_v ∈ italic_V ( italic_H ) ) and (P_e:eE(H)):subscript𝑃_𝑒𝑒𝐸𝐻(P_{\_}e\colon e\in E(H))( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e : italic_e ∈ italic_E ( italic_H ) ) be a 3333-fat minor model of H𝐻Hitalic_H in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q. We begin by considering the 3333-fat sub-model of L𝐿Litalic_L in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.

Claim 1:There exists zV(L)𝑧𝑉𝐿z\in V(L)italic_z ∈ italic_V ( italic_L ) such that B_zLsubscript𝐵_𝑧superscript𝐿B_{\_}z\subseteq L^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ⊆ italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT or B_zRsubscript𝐵_𝑧superscript𝑅B_{\_}z\subseteq R^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ⊆ italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT.

Proof.

Let N~_q=G_qLRsubscript~𝑁_𝑞subscript𝐺_𝑞superscript𝐿superscript𝑅\tilde{N}_{\_}q=G_{\_}q-L^{\star}-R^{\star}over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q = italic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q - italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT - italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. Since N_q~~subscript𝑁_𝑞\tilde{N_{\_}q}over~ start_ARG italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q end_ARG is obtained from N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q by adding paths, each with one end-vertex on N_qsubscript𝑁_𝑞N_{\_}qitalic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q, it follows that tw(N~_q)=tw(N_q)twsubscript~𝑁_𝑞twsubscript𝑁_𝑞\operatorname{tw}(\tilde{N}_{\_}q)=\operatorname{tw}(N_{\_}q)roman_tw ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) = roman_tw ( italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ). Now suppose that V(B_v)V(N~_q)𝑉subscript𝐵_𝑣𝑉subscript~𝑁_𝑞V(B_{\_}v)\cap V(\tilde{N}_{\_}q)\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ∩ italic_V ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) ≠ ∅ for every vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ). Let X={vV(L):V(B_v)V(N~_q)}𝑋conditional-set𝑣𝑉𝐿not-subset-of-or-equals𝑉subscript𝐵_𝑣𝑉subscript~𝑁_𝑞X=\{v\in V(L)\colon V(B_{\_}v)\not\subseteq V(\tilde{N}_{\_}q)\}italic_X = { italic_v ∈ italic_V ( italic_L ) : italic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ⊈ italic_V ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) } and Y={uvE(LX):V(P_uv)V(N~_q)}𝑌conditional-set𝑢𝑣𝐸𝐿𝑋not-subset-of-or-equals𝑉subscript𝑃_𝑢𝑣𝑉subscript~𝑁_𝑞Y=\{uv\in E(L-X)\colon V(P_{\_}{uv})\not\subseteq V(\tilde{N}_{\_}q)\}italic_Y = { italic_u italic_v ∈ italic_E ( italic_L - italic_X ) : italic_V ( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u italic_v ) ⊈ italic_V ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) }. Then LXY𝐿𝑋𝑌L-X-Yitalic_L - italic_X - italic_Y is a minor of N~_qsubscript~𝑁_𝑞\tilde{N}_{\_}qover~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.Since every path in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q from V(N~_q)𝑉subscript~𝑁_𝑞V(\tilde{N}_{\_}q)italic_V ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) to V(L)V(R)𝑉superscript𝐿𝑉superscript𝑅V(L^{\star})\cup V(R^{\star})italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ∪ italic_V ( italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) contains a vertex from {x_1,x_2,x_3,y_1,y_2,y_3}subscript𝑥_superscript1subscript𝑥_superscript2subscript𝑥_superscript3subscript𝑦_superscript1subscript𝑦_superscript2subscript𝑦_superscript3\{x_{\_}1^{\star},x_{\_}2^{\star},x_{\_}3^{\star},y_{\_}1^{\star},y_{\_}2^{%\star},y_{\_}3^{\star}\}{ italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT }, it follows that |XY|6𝑋𝑌6|X\cup Y|\leqslant 6| italic_X ∪ italic_Y | ⩽ 6. Therefore tw(N~_q)tw(LXY)tw(L)68twsubscript~𝑁_𝑞tw𝐿𝑋𝑌tw𝐿68\operatorname{tw}(\tilde{N}_{\_}q)\geqslant\operatorname{tw}(L-X-Y)\geqslant%\operatorname{tw}(L)-6\geqslant 8roman_tw ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) ⩾ roman_tw ( italic_L - italic_X - italic_Y ) ⩾ roman_tw ( italic_L ) - 6 ⩾ 8, contradicting Lemma5. As such, there exists zV(L)𝑧𝑉𝐿z\in V(L)italic_z ∈ italic_V ( italic_L ) such that V(B_z)V(N~_q)=𝑉subscript𝐵_𝑧𝑉subscript~𝑁_𝑞V(B_{\_}z)\cap V(\tilde{N}_{\_}q)=\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ) ∩ italic_V ( over~ start_ARG italic_N end_ARG start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) = ∅. Since B_zsubscript𝐵_𝑧B_{\_}zitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z is connected, it follows that either B_zLsubscript𝐵_𝑧superscript𝐿B_{\_}z\subseteq L^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ⊆ italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT or B_zRsubscript𝐵_𝑧superscript𝑅B_{\_}z\subseteq R^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ⊆ italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT.∎

By symmetry, we may assume without loss of generality that B_zLsubscript𝐵_𝑧superscript𝐿B_{\_}z\subseteq L^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z ⊆ italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT.

Claim 2: For every vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ), V(B_v)V(L)𝑉subscript𝐵_𝑣𝑉superscript𝐿V(B_{\_}v)\cap V(L^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ∩ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅.

Proof.

Suppose there is some vertex vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ) such that V(B_v)V(L)=𝑉subscript𝐵_𝑣𝑉superscript𝐿V(B_{\_}v)\cap V(L^{\star})=\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ∩ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) = ∅. Then every (B_z,B_v)subscript𝐵_𝑧subscript𝐵_𝑣(B_{\_}z,B_{\_}v)( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z , italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v )-path in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q contains a vertex from {x_1,x_2,x_3}subscript𝑥_superscript1subscript𝑥_superscript2subscript𝑥_superscript3\{x_{\_}1^{\star},x_{\_}2^{\star},x_{\_}3^{\star}\}{ italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT }. So G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q contains at most three vertex-disjoint (B_z,B_v)subscript𝐵_𝑧subscript𝐵_𝑣(B_{\_}z,B_{\_}v)( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_z , italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v )-paths, which contradicts (B_v:vV(L)):subscript𝐵_𝑣𝑣𝑉𝐿(B_{\_}v\colon v\in V(L))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v : italic_v ∈ italic_V ( italic_L ) ) and (P_e:eE(L)):subscript𝑃_𝑒𝑒𝐸𝐿(P_{\_}e\colon e\in E(L))( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e : italic_e ∈ italic_E ( italic_L ) ) being a 3333-fat model of a 4444-connected graph.∎

Claim 3: Every vertex of degree at least 3333 in Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT is contained in B_vsubscript𝐵_𝑣B_{\_}vitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v for some vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ).

Proof.

Let vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ). Since deg_L(v)3subscriptdegree_𝐿𝑣3\deg_{\_}L(v)\geqslant 3roman_deg start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_L ( italic_v ) ⩾ 3, B_vsubscript𝐵_𝑣B_{\_}vitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v contains a vertex in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q of degree at least 3333. If V(B_v)V(L)𝑉subscript𝐵_𝑣𝑉superscript𝐿V(B_{\_}v)\subseteq V(L^{\star})italic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ⊆ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ), then B_vsubscript𝐵_𝑣B_{\_}vitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v contains a vertex of degree at least 3333 in Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. If V(B_v)V(N_q)𝑉subscript𝐵_𝑣𝑉subscript𝑁_𝑞V(B_{\_}v)\cap V(N_{\_}q)\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ∩ italic_V ( italic_N start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ) ≠ ∅, then Claim 2 implies that B_vsubscript𝐵_𝑣B_{\_}vitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v contains x_1subscript𝑥_superscript1x_{\_}1^{\star}italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT, x_2subscript𝑥_superscript2x_{\_}2^{\star}italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT, or x_3subscript𝑥_superscript3x_{\_}3^{\star}italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. So each B_vsubscript𝐵_𝑣B_{\_}vitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v contain a vertex of degree at least 3333 in Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. Since |{uV(L):deg_L(u)3}|=|V(L)|conditional-set𝑢𝑉superscript𝐿subscriptdegree_superscript𝐿𝑢3𝑉𝐿\lvert\{u\in V(L^{\star})\colon\deg_{\_}{L^{\star}}(u)\geqslant 3\}\rvert=%\lvert V(L)\rvert| { italic_u ∈ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) : roman_deg start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ( italic_u ) ⩾ 3 } | = | italic_V ( italic_L ) |, the claim then follows.∎

We now consider the 3333-fat sub-model of R𝑅Ritalic_R in G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.

Claim 4: For every uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ), V(B_u)V(R)𝑉subscript𝐵_𝑢𝑉superscript𝑅V(B_{\_}u)\cap V(R^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅.

Proof.

By symmetry, Claims 1 & 2 imply that either V(B_u)V(L)𝑉subscript𝐵_𝑢𝑉superscript𝐿V(B_{\_}u)\cap V(L^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅ for every uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ), or V(B_u)V(R)𝑉subscript𝐵_𝑢𝑉superscript𝑅V(B_{\_}u)\cap V(R^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅ for every uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ). Suppose that V(B_u)V(L)𝑉subscript𝐵_𝑢𝑉superscript𝐿V(B_{\_}u)\cap V(L^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅ for every uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ). Then there is a vertex uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ) such that B_uLsubscript𝐵_𝑢superscript𝐿B_{\_}u\subseteq L^{\star}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ⊆ italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. Since deg_R(u)3subscriptdegree_𝑅𝑢3\deg_{\_}R(u)\geqslant 3roman_deg start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_R ( italic_u ) ⩾ 3, it follows that B_usubscript𝐵_𝑢B_{\_}uitalic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u contains a vertex of degree at least 3333 from Lsuperscript𝐿L^{\star}italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT. But by Claim 3, this implies that V(B_u)V(B_v)𝑉subscript𝐵_𝑢𝑉subscript𝐵_𝑣V(B_{\_}u)\cap V(B_{\_}v)\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v ) ≠ ∅ for some vV(L)𝑣𝑉𝐿v\in V(L)italic_v ∈ italic_V ( italic_L ), a contradiction. Therefore, V(B_u)V(R)𝑉subscript𝐵_𝑢𝑉superscript𝑅V(B_{\_}u)\cap V(R^{\star})\neq\varnothingitalic_V ( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_u ) ∩ italic_V ( italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT ) ≠ ∅ for every uV(R)𝑢𝑉𝑅u\in V(R)italic_u ∈ italic_V ( italic_R ).∎

To conclude the proof, consider the edges x_1y_1,x_2y_2,x_3y_3E(H)subscript𝑥_1subscript𝑦_1subscript𝑥_2subscript𝑦_2subscript𝑥_3subscript𝑦_3𝐸𝐻x_{\_}1y_{\_}1,x_{\_}2y_{\_}2,x_{\_}3y_{\_}3\in E(H)italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 1 , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 2 , italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT 3 ∈ italic_E ( italic_H ).For each i{1,2,3}𝑖123i\in\{1,2,3\}italic_i ∈ { 1 , 2 , 3 }, let P_isubscript𝑃_𝑖P_{\_}iitalic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i be the path in our model that corresponds to x_iy_isubscript𝑥_𝑖subscript𝑦_𝑖x_{\_}iy_{\_}iitalic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i. Since B_x_iP_iB_y_isubscript𝐵_subscript𝑥_𝑖subscript𝑃_𝑖subscript𝐵_subscript𝑦_𝑖B_{\_}{x_{\_}i}\cup P_{\_}i\cup B_{\_}{y_{\_}i}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i ∪ italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i ∪ italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i is connected, Claims 2 & 4 imply that there is an (L,R)superscript𝐿superscript𝑅(L^{\star},R^{\star})( italic_L start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT , italic_R start_POSTSUPERSCRIPT ⋆ end_POSTSUPERSCRIPT )-path P_isubscript𝑃_superscript𝑖P_{\_}i^{\prime}italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT in B_x_iP_iB_y_isubscript𝐵_subscript𝑥_𝑖subscript𝑃_𝑖subscript𝐵_subscript𝑦_𝑖B_{\_}{x_{\_}i}\cup P_{\_}i\cup B_{\_}{y_{\_}i}italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i ∪ italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i ∪ italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i. By Lemma4, there are distinct i,j{1,2,3}𝑖𝑗123i,j\in\{1,2,3\}italic_i , italic_j ∈ { 1 , 2 , 3 } such that dist_G_q(P_i,P_j)2subscriptdist_subscript𝐺_𝑞subscript𝑃_superscript𝑖subscript𝑃_superscript𝑗2\operatorname{dist}_{\_}{G_{\_}q}(P_{\_}i^{\prime},P_{\_}j^{\prime})\leqslant 2roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⩽ 2. Therefore, there is X_i{B_x_i,P_i,B_y_i}subscript𝑋_𝑖subscript𝐵_subscript𝑥_𝑖subscript𝑃_𝑖subscript𝐵_subscript𝑦_𝑖X_{\_}i\in\{B_{\_}{x_{\_}i},P_{\_}i,B_{\_}{y_{\_}i}\}italic_X start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i ∈ { italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i , italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i , italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i } and X_j{B_x_j,P_j,B_y_j}subscript𝑋_𝑗subscript𝐵_subscript𝑥_𝑗subscript𝑃_𝑗subscript𝐵_subscript𝑦_𝑗X_{\_}j\in\{B_{\_}{x_{\_}j},P_{\_}j,B_{\_}{y_{\_}j}\}italic_X start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j ∈ { italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j , italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j , italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j } such that dist_G_q(X_i,X_j)2subscriptdist_subscript𝐺_𝑞subscript𝑋_𝑖subscript𝑋_𝑗2\operatorname{dist}_{\_}{G_{\_}q}(X_{\_}i,X_{\_}j)\leqslant 2roman_dist start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q ( italic_X start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_i , italic_X start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_j ) ⩽ 2, contradicting (B_v:vV(H)):subscript𝐵_𝑣𝑣𝑉𝐻(B_{\_}v\colon v\in V(H))( italic_B start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_v : italic_v ∈ italic_V ( italic_H ) ) and (P_e:eE(H)):subscript𝑃_𝑒𝑒𝐸𝐻(P_{\_}e\colon e\in E(H))( italic_P start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_e : italic_e ∈ italic_E ( italic_H ) ) being 3333-fat.∎

3.3 Finding fat minors

In this subsection, we shall find H𝐻Hitalic_H as a fat minor in length spaces (or graphs) that are quasi-isometric to G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.

Lemma 7.

Let G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG be a length space that is q𝑞qitalic_q-quasi-isometric to G_qsubscript𝐺_𝑞G_{\_}qitalic_G start_POSTSUBSCRIPT _ end_POSTSUBSCRIPT italic_q.If G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG is a graph, then let K=2𝐾2K=2italic_K = 2, otherwise let K=213q2𝐾superscript213superscript𝑞2K=2^{-13q^{2}}italic_K = 2 start_POSTSUPERSCRIPT - 13 italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT.Then G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG contains H𝐻Hitalic_H as a K𝐾Kitalic_K-fat minor.

Lemmas6 and7 immediately implies Theorems1 and2. Before proving Lemma7, we need the following two lemmas to help us build our fat H𝐻Hitalic_H model in G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG. The first lemma allows us to find path-connected sets in G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG which spans a set of elements, while the second lemma allows us to find path-connected sets in G^^𝐺\widehat{G}over^ start_ARG italic_G end_ARG that are sufficiently far away from each other.

Lemma 8.
Fat minors cannot be thinned (by quasi-isometries) (2024)
Top Articles
Latest Posts
Article information

Author: Kerri Lueilwitz

Last Updated:

Views: 5399

Rating: 4.7 / 5 (47 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Kerri Lueilwitz

Birthday: 1992-10-31

Address: Suite 878 3699 Chantelle Roads, Colebury, NC 68599

Phone: +6111989609516

Job: Chief Farming Manager

Hobby: Mycology, Stone skipping, Dowsing, Whittling, Taxidermy, Sand art, Roller skating

Introduction: My name is Kerri Lueilwitz, I am a courageous, gentle, quaint, thankful, outstanding, brave, vast person who loves writing and wants to share my knowledge and understanding with you.